© 1991 Federation of European Biochemical Societies 00145793/91/\$3.50

Structure of the active 27-residue fragment of human calpastatin

Rieko Ishima¹, Atsuo Tamura¹, Kazuyuki Akasaka¹, Kaoru Hamaguchi², Keisuke Makino², Takashi Murachi^{3†}, Masakazu Hatanaka³ and Masatoshi Maki³

¹Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606-01, Japan, ²Kyoto Institute of Technology, Matsugasaki, Kyoto 606, Japan and ³Institute for Virus Research, Kyoto University, Kyoto 606, Japan

Received 9 September 1991; revised version received 18 October 1991

A synthetic 27-residue peptide corresponding to exon 1B of the endogenous inhibitor calpastatin contains a well-conserved region and has an ability to inhibit the cysteine endopeptidase calpain specifically. We examined the solution structure of this peptide in DMSO-d₆ by two-dimensional ¹H NMR spectroscopy. Although regular secondary structures such as α -helix and β -sheet were not found, the region from Ile¹⁸ to Arg²³ formed a well-defined structure with a type I β -turn. This region coincided well with the highly conserved region of calpastatin. The result strongly suggests that this turn structure is essential for the inhibitory activity of calpastatin.

Human calpastatin; Calpain; ¹H NMR; Structure in solution

1. INTRODUCTION

The cysteine protease calpain (EC 3.4.22.17) is strongly and specifically inhibited by the endogenous protein calpastatin. Though both calpain and calpastatin are known to be common in animal cells [1–3] and are expected to play important roles in various cellular functions coupled with calcium-ion mobilization [4–8], nothing is known about how they interact with each other

Calpastatin with about 700 residues contains four internally repetitive sequences (Domains 1-4) and one non-homologous sequence at the amino-terminal end (Domain L), each consisting of approximately 140 residues [9-11]. Each domain has three well-conserved regions located on separate exons, A,B and C, of which exon B is essential and strongly inhibits calpains I and II [12]. So far, no X-ray crystallography has been carried out on calpastatin or its domains. CD and ¹H NMR studies of Uemori et al. [13] strongly suggested that the repetitive domain is disordered in aqueous solution. Available knowledge of serine protease inhibitors [14] and also of cystatin, a cysteine protease inhibitor the crystal structure of which has recently been determined

Abbreviations: CD, circular dichroism; ¹H NMR, proton nuclear magnetic resonance; DMSO-d₆, dimethyl sulfoxide-d₆; HOHAHA, homonuclear Hartmann Hahn spectroscopy; DQFCOSY, double quantum filtered correlated spectroscopy; NOESY, nuclear Overhauser effect spectroscopy.

†deceased

Correspondence address: K. Akasaka, Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606-01, Japan. Fax: (81) (75) 751-2085.

[15], indicate that certain well-defined structures are required for these protease inhibitors to bind specifically to target enzymes. The reported lack of well-defined structure for the repetitive domain of calpastatin [13] is rather puzzling from this viewpoint.

In the present work, using ¹H NMR, we studied the conformation of a synthetic oligopeptide of 27 residues corresponding to exon B in Domain 1 (exon 1B) in DMSO-d₆. This peptide contains the highly conserved region and retains a strong inhibitory potency against calpain ($K_i \approx 10^{-8}$ M) in spite of its size constituting only one-fifth of the repetitive domain [16]. It is natural to expect that this indispensable peptide fragment will assume a certain defined structure at least when it binds to calpain. We chose DMSO-d₆ as a solvent, expecting that, to some extent, it will represent a somewhat hydrophobic environment for the inhibitor binding site.

2. MATERIALS AND METHODS

The synthesis and purification of the 27-residue peptide was performed as described previously [16]. For ^{1}H NMR measurements, the purified peptide was dissolved in DMSO-d₆ at a concentration of 5 mg/ml. One-dimensional spectral features in DMSO-d₆ showed little difference from those in $^{2}H_{2}O$.

Two-dimensional DQFCOSY, HOHAHA (τ_{mixing} =100 and 120 ms) and NOESY (τ_{mixing} =50, 150, 300 and 500 ms) measurements were performed at 37°C on a JEOL GX-400 spectrometer with a spectral width of 5000 Hz and 2048 data points. Sixty-four scans were accumulated for each 256 column data under pre saturation of residual H²HO.

3. RESULTS

Sequence-specific ¹H NMR assignments [17] were carried out by a combined use of DQFCOSY, HO-HAHA and NOESY, and the results are summarized in

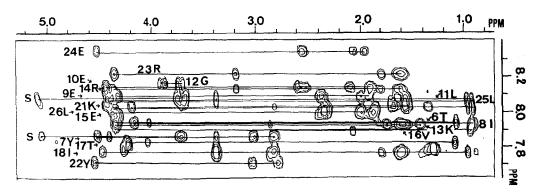


Fig. 1. A 2D HOHAHA spectrum (τ_{mix} = 120 ms) between the NH (7.6-8.4 ppm) and aliphatic protons (0.3-5.3 ppm) of the 27-residue peptide at 400 MHz. Specific signal assignments were obtained from sequential assignment.

Fig. 2. Summary of the assigned inter-residue NOE connectivities (—). The highly conserved residues are marked with asterisks(*).

Table I. For residues Asp¹-Ser⁵, signal overlap and small NOE's did not allow reliable sequential assignments. Fig. 1 shows a HOHAHA spectrum for the aliphatic NH region. From studies with varied mixing time from 50 ms to 500 ms, 23 inter-residue NOE's (including sequential ones) could be identified as summarized in Fig. 2.

A notable feature in Fig. 2 is the presence of $H_{\alpha i}$ – $H_{\delta i+1}$ NOE connectivities between Ile¹⁸ and Pro¹⁹ and between

Pro¹⁹ and Pro²⁰, which are derived from the spectrum shown in Fig. 3A. No $H_{\alpha i}-H_{\alpha i+1}$ NOE connectivities were identified for these residues. These results indicate that the conformations of the two consecutive peptide bonds, $Ile^{18}-Pro^{19}$ and $Pro^{19}-Pro^{20}$, are locked to *trans* [17]. Another notable feature of Fig. 2 is the presence of strong $H_{Ni}-H_{Ni+1}$ NOE connectivities between Lys²¹ and Tyr²² and between Tyr²² and Arg²³ (cf. Fig. 3B). In addition, $N_i-\beta_{i+1}$ NOE was observed between Lys²¹ and Tyr²². The observed inter-residue NOE's, together with a relatively large coupling constant $J_{N\alpha}$ for Tyr²² (7.8 Hz), suggest strongly that the peptide segment of Pro²⁰-Lys²¹-Tyr²²-Arg²³ assumes a type I β -turn [17] with a hydrogen bonding between C=O of Pro²⁰ and NH of Arg²³.

Another strong H_{Ni} - H_{Ni+1} NOE connectivity was found between peaks at 8.14 ppm (assignable to Gly^{12}) and 7.91 ppm (assignable to Lys^{13}) (cf. Fig. 3B). This

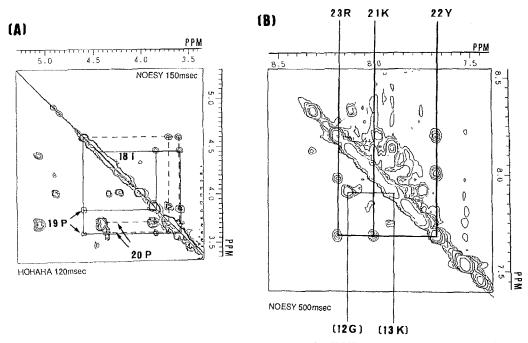


Fig. 3. (A) An NOE spectrum between the Pro α and δ protons with a corresponding HOHAHA spectrum and (B) an NOE spectrum between the NH protons, all measured at 400 MHz.

Table I

Summary of assigned ¹H chemical shifts of the 27-residue peptide having the sequence of exon 1B of calpastatin

_	Chemical shifts (ppm)					
Resi- due	NH	α	β		others	
6 T	7.75	4.22	4.02 4.02	ОН	4.90	
7 Y	7.83	4.51	3.02	δ	7.08	7.08
			2.81	ε	7.38	7.38
1 8	7.93	4.15	1.83	γ CH3	0.89	0.89
				γСН3	1.51	1.18
				δ CH3	0.90	
9 E	8.03	4.31	1.99	γ	2.35	2.36
10 F	0.12	4.44	1.90	соон	12.8	2.50
10 E	8.12	4.44	2.11 1.90	γ COOH	2.50 12.8	2.59
	8.04	4.30	1.55		1.55	
11 L	0.07	J.JU	1.55	$\stackrel{\gamma}{\delta}$	0.95	0.90
12G	8.14	3.74	1	U	0.75	0.70
	U.1-T	3.86				
13 K	7.91	4.36	1.78	γ	1.40	1.41
			1.78	δ	1.61	1.61
				ε	7.72	
14 R	8.12	4.34	1.80	γ	1.59	1.61
			1.80	δ	3.19	3.19
				ε NH	7.51	
15E	7.96	4.37	1.88	γ	2.35	2.35
			1.97			
1 (1)	7.00	4.00		COOH	12.8	0.03
16 V 17 T	7.98 7.89	4.35 4.34	1.70	γ OH	0.95	0.93
	7.89	4.34	4.01 4.01	UП	4.90	
18 I	7.73	4.47	1.79	γСН3	0.90	0.87
	7.75	4,47	1.77	γCH2	1.58	1.13
				δCH3	0.95	1.10
19 P		4.62	2.22	γ	1.89	1.90
			1.99	$\stackrel{\cdot}{\delta}$	3.85	3.61
20 P		4.40	2.10	γ	1.97	1.88
			1.98	δ	3.72	3.61
21 K	8.01	4.19	1.68	γ	1.33	1.34
			1.68	δ	1.56	1.56
				ε	2.81	2.81
			2.50	εNH2	7.72	
22 Y	7.67	4.53	2.79	δ	7.08	7.08
23 R	0.10	4.24	3.02	ε	7.38	7.38
	8.19	4.34	1.80	γ	1.59 3.19	1.61
			1.80	$\delta \ arepsilon { m NH}$	7.51	3.19
24 E	8.32	4.52	2.18	εNΠ γ	2.56	2.56
ωT LJ	0.34	7.74	1.97	соон	12.8	2.50
25 L	8.00	4.4	1.55		1.55	
	0.00		1.55	$\stackrel{\gamma}{\mathcal{S}}$	0.89	0.94
26 L	7.86	4.34	2.25	γ	2.05	
			2.05	$\stackrel{'}{\delta}$	0.93	0.93
27 A	7.75	4.26	1.38			

indicates a possibility of another turn (Type II) [17] involving Glu¹⁰-Leu¹¹-Gly¹²-Lys¹³.

4. DISCUSSION

Regular secondary structures such as α -helix and β -sheet were not found for the active 27-residue peptide.

The result appears to be consistent with the previous study on Domain 1 [13]. However, the region from Ile¹⁸ to Arg²³ was clearly shown to have a restricted structure in which the conformations of the two consecutive peptide bonds, Ile18-Pro19 and Pro19-Pro20, are locked to trans, and Pro²⁰-Lys²¹-Tyr²²-Arg²³ forms a type I β turn. A most interesting point is that this region coincides almost perfectly with the region of the peptide Thr¹⁷-Arg²³ consisting of highly conserved residues (marked with asterisks in Fig. 2). A possibility of another turn was suggested for the region from Glu10 to Lys¹³, which also contains a highly conserved residue. Gly¹². These findings suggest strongly that the restricted structures formed by Ile18-Arg23, and probably also by Glu¹⁰-Lys¹³, are essential for the specific interaction of calpastatin with calpain. From the present study combined with the earlier results by Uemori et al. [13], we may conclude that, although the repetitive domain of calpastatin does not have an extensive tertiary structure such as those found in most serine protease inhibitors [14] and cystatin [15], it would have a well-defined local structure essential for the specific interaction with calpain.

Acknowledgement: This work was carried out as part of a co-operative research project sponsored by Kyoto University.

REFERENCES

- [1] Parks, C. (1986) in: Proteinase Inhibitors (A.J. Barrett and G. Salvesen, eds.) Elsevier, Amsterdam, pp. 571-587.
- [2] Murachi, T., Tanaka, K., Hatanaka, M. and Murakami, T. (1981) Adv. Enzym. Regul. 19, 407-424.
- [3] Murachi, T. (1983) Trends Biochem. Sci. 8, 167-169.
- [4] Murachi, T. (1983) in: Calcium and Cell Functions (Y.W. Cheung, ed) Vol. 4, Academic Press, Orlando, FL, pp. 377-410.
- [5] Murachi, T. (1984) Biochem. Soc. Symp. 49, 149-167.
- [6] Pontremoli, S. and Melloni, E., (1986) Annu. Rev. Biochem. 55, 455-481.
- [7] Murray, A.W., Fournier, A. and Hardy, S.J. (1987) Trends Biochem. Sci. 12, 53-54.
- [8] Suzuki, K. (1987) Trends Biochem. Sci. 12, 103-105.
- [9] Emori, Y., Kawasaki, H., Imajoh, S., Imahori, K. and Suzuki, K. (1987) Proc. Natl. Acad. Sci. USA 84, 3590-3594.
- [10] Takano, E., Maki, M., Mori, H., Hatanaka, M., Marti, T., Ti-tani, K., Kannagi, R., Ooi, T. and Murachi, T. (1988) Biochemistry 27, 1964–1972.
- [11] Asada, K., Ishino, Y., Shimada, M., Shimojo, T., Endo, M., Kimizuka, F., Kato, I., Maki, M., Hatanaka, M. and Murachi, T. (1989) J. Enzym. Inhib. 3, 49-56.
- [12] Maki, M., Takano, E., Osawa, T., Murachi, T. and Hatanaka, M. (1988) J. Biol. Chem. 263, 10254-10261.
- [13] Uemori, T., Shimojo, T., Asada, K., Asano, T., Kimizuka, F., Kato, I., Maki, M., Hatanaka, M., Murachi, T., Hanzawa, H. and Arata, Y. (1989) Biochem. Biophys. Res. Commun. 166, 1485–1493.
- [14] Hiromi, K., Akasaka, K., Mitsui, Y., Tonomura, B. and Murao, S. (1985) in: Protein Protease Inhibitor - The Case of Streptomyces Subtilisin Inhibitor, Elsevier, Amsterdam.
- [15] Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshikov, A., Brzin, J., Kos, J. and Turk, V., (1988) EMBO J., 7, 2593–2599.
- [16] Maki, M., Bagci, H., Hamaguchi, K., Ueda, M., Murachi, T. and Hatanaka, M. (1989) J. Biol. Chem. 254, 18866-18869.
- [17] Wüthrich, K. (1986) in: NMR of Proteins and Nucleic Acids, Wiley.